
A Case Study on Formalizing Algebra in a Module System

Stefania Dumbrava, Fulya Horozal, Kristina Sojakova
Jacobs University

D-28759, Bremen, Germany
s.dumbrava@jacobs-university.de, f.horozal@jacobs-university.de,

k.sojakova@cjacobs-university.de

ABSTRACT
We present a case study on a modular formal representa-
tion of algebra in the recently developed module system for
the Twelf implementation of the Edinburgh Logical Frame-
work LF. The module system employs signature morphisms
as its main primitive concept, which makes it particularly
useful to reason about structural translations between math-
ematical concepts. The mathematical content is encoded in
the usual way using LF’s higher order abstract syntax and
judgments-as-types paradigm, but using the module system
to treat all algebraic structures independently. Signature
morphisms are used to give an explicit yet simple represen-
tation of modular dependency between the algebraic struc-
tures. Our results demonstrate the feasibility of comprehen-
sively formalizing large-scale theorems and proofs and thus
promise significant future applications.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Meth-
ods]: Representation languages

General Terms
Design, Languages, Verification

Keywords
Logical frameworks, Twelf, modularity, encodings, abstract
algebra

1. INTRODUCTION
In recent decades, a large amount of mathematics has been

formalized in various proof systems, which created large
libraries of mechanically verified mathematical knowledge.
Several proof systems have developed module systems to
manage their large mathematical developments. These mod-
ule systems often follow the “little theories approach” pro-
posed in [FGT92], in which separate contexts are repre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MLPA CADE 2009, Montreal, Canada
Copyright 2009 ACM 978-1-60558-954-1/09/08 ...$10.00.

sented by separate theories. These permit to encapsulate
mathematical theories and re-use them in different contexts.

For a long time, Coq [Coq] used a sectioning mechanism
that separates its formalizations into different sections to
which definitions, theorems and proofs are made local. An
ML-like module system for Coq was later implemented (see
[Chr03]), which conveniently lets a user define parametrized
theories or data structures to be easily used in other formal-
izations.

Locales ([KW98]) are the modules of Isabelle [Pau94] for
efficient theory management that group relevant mathemat-
ical theories together. They are similar to the sections in
Coq, but provide additional features. For instance, an al-
ready existing locale can be opened again to add theorems to
its content. Locales are integrated with Isabelle’s language
for readable proof documents (Isar [Wen99]) and interpreted
in the context of proofs.

Recently, a module system for the Twelf implementation
[PS99] of the Edinburgh Logical Framework LF [HHP93] was
developed (see [RS09]). The Twelf module system employs
signatures and signature morphisms as its main primitive
concepts. Mathematical theories are formalized in signa-
tures as a collection of constant declarations and constant
definitions. The Twelf module system follows the approach
of using signature morphisms to represent structural rela-
tionships between mathematical theories (see [Far00]). This
leads to the notion of signature graphs, which are a simple
and scalable means to relate signature to one another.

In this paper, we present a case study on the formalization
of mathematical theories from algebra in the Twelf module
system. Algebraic structures are particularly suitable for
modular representation as there is inherently a large amount
of sharing involved, and thus are suitable for an evaluation of
a module system. This case study is one of the initial exten-
sive applications of the Twelf module system for mathemat-
ical theories (the other application is on the representation
of proof and model theory of first-order logic, see [HR09]).

This paper is organized as follows. We present the Twelf
system and its module system in Sect. 2. In Sect. 3, we
present our case study, in particular, the encoding of alge-
braic structures in Sec. 3.1 and that of lattices in Sect. 3.2.
We summarize our results and discuss future work in Sect. 4.

2. THE TWELF SYSTEM
The Twelf system is an implementation of the logical

framework LF designed as a meta-language for the represen-
tation of deductive systems. It is a dependent type theory

with typed terms and kinded type families.

Kinds: K ::= type | A→ K
Type families: A,B ::= a | A M | Πx:AB | A→ B
Objects: M,N ::= c | x | λx:AM |M N

Twelf features the dependent product type constructor
Πx:AB and its introductory axiom, the λ-binder λx:AM . As
usual, application is written as juxtaposition M N . A→ B
abbreviates Πx:AB if x does not occur freely in B. Type
families are kinded by kinds, where types are the type fam-
ilies kinded by type, and objects are typed by types.

Twelf signatures contain declarations of type- or object-
level constants. Constants are declared in the form of decla-
rations a : K or c : A, or definitions a : K = A or c : A = M .
Variables x : A are typed, never kinded.

Signature morphisms define mappings between signatures
and come in two flavors: structures, which copy and in-
stantiate a signature S into T , and views, which translate
from a signature S to T . Readers familiar with modular
theory development languages such as development graphs
([AHMS99]) will recognize structures as definitional theory
morphisms and views as postulated theory morphisms.

A modular Twelf specification is a sequence of signature
declarations DT and view declarations Dv. Signatures are
sequences of constant declarations Dc, structure declara-
tions Ds and signature inclusions DI . Similarly, views are
sequences of assignments to constants and structures. These
are shown below in terms of Twelf’s concrete syntax. Key-
words are introduced with % and precede all declarations
except for constant declarations.

Start: S ::= DT | Dv

Signatures: DT ::= %sig T = {(Dc | Ds | DI)
∗}.

Views: Dv ::= %view v : S -> T =
{(c := C | %struct s := µ)∗}.

Inclusions: DI ::= %include T .
Constants: Dc ::= c : C. | c : C = C.
Structures: Ds ::= %struct s : S =

{(c := C. | %struct s := µ.)∗}.
Terms: C ::= type | c | x | C -> C | C C

| {x:C} C | [x:C] C
Morphisms: µ ::= v | s | µ µ

Finally, there are two classes of expressions. Firstly, terms
are normal LF expressions where the Π-binder is written
with braces {} and the λ-binder with square brackets [].
Secondly, morphisms are expressions that translate between
signatures: Each structure s or view v induces a signature
morphism, and the juxtaposition µ µ′ of morphisms repre-
sents their diagram-order composition. Morphisms preserve
all judgments regarding well-formedness, typing, and equal-
ity (see [HST94, RS09] for the preservation results).

A view declaration encodes a translation between two sig-
natures. A view occurs on toplevel and gives domain and
codomain explicitly. It must instantiate all constants (ex-
cept those that have definitions) of the domain signature
with expressions of the codomain signature. This induces a
signature morphism in the obvious way.

A structure declaration %struct s : S = {} occurring in
the signature T represents an inheritance relation from S
to T : It adds a copy of S to T . The copied constants are
accessible by qualified names formed by prefixing the struc-
ture name. Then the declaration of a structure s induces
a signature morphism from the instantiated signature S to
its containing signature, which maps every constant c of S
to s.c. A structure declaration may also carry assignments,
which are used to translate S when copying it into T .

%sig FOL = {
o : type.
i : type.
true : o.
false : o.
¬ : o -> o.
...

}.
%sig FOLEQ = {

%struct fol : FOL.
== : fol.i -> fol.i -> fol.o.

}.

For example, consider the following signature declarations,
which we use for our encodings. The signature FOL contains
a type o for propositions and a type i for first-order individ-
uals. The terms truth and false represent the truth values
for propositions. FOL encodes the logical connectives as ex-
pected (e.g., ¬ encodes the unary connective for negation).
The signature FOLEQ encodes first-order logic with equality
by inheriting from FOL via a structure called fol and adds
a symbol for equality.

Then the signature FOLEQPF encodes natural deduction
style proof rules for the logical connectives and quantifiers
in FOL. Firstly, it inherits from FOL and FOLEQ where the
instantiation %struct fol := fol. in the structure foleq

works as follows: The left side of the instantiation is a sym-
bol declared in the domain signature – here: FOLEQ – and
the right side is an expression over the codomain signature
– here: FOLEQPF. This instantiation has the effect of a shar-
ing declaration: The two structures fol and foleq.fol in-
heriting from FOL are identified. Secondly, it declares the
constant ` as o-indexed type family. This type family ex-
emplifies how logic encodings in LF represent judgments as
types and derivations as objects: Objects of type ` A repre-
sent derivations of the judgment“A is true”. Then it declares
constants that encode the introduction and elimination rules
of connectives and quantifiers (e.g., notI and notE encode
the introduction and elimination rules for negation).

%sig FOLEQPF = {
%struct fol : FOL.
%struct foleq : FOLEQ = {% struct fol := fol.}.
` : o -> type.
notI : (` A -> {B} ` B) -> ` (fol.¬ A).
notE : ` A -> ` (fol.¬ A) -> {B} ` B.
...

}.

Note that we use implicit arguments: Upper case free vari-
ables in declarations are assumed be implicitly Π-bound on
the outside. This has the effect of free parameters. For ex-
ample, in notE, the variable A is free. The verbal reading of
the rule is “For any A, if A is true and ¬A is true, then for
all B we have B is true ”.

Twelf allows one to omit the qualified names of copied
constants in a signature using the keyword %open. For in-
stance, in FOLEQPF, if we consider the following structure
declaration %struct fol : FOL %open ¬., then it is possi-
ble to refer to the negation connective simply as ¬. The
semantics of %open is that if s is a structure from signature
S occurring in signature T , then %open c, for a constant c
of S, is equivalent to defining a new constant c as s.c in T .
%open can be used for inclusion as well in a similar way.

Twelf computes the semantics of the modular signatures
by elaborating them to the non-modular syntax. For exam-
ple, FOLEQPF is equivalent to

%sig FOLEQPF2 = {
fol.o : type.
fol.i : type.
fol.true : o.
fol.false : o.

fol.¬ : o -> o.
...
foleq.fol.o : type = fol.o.
foleq.fol.i : type = fol.i.
foleq.fol.true : fol.o = fol.true.
...
` : fol.o -> type.
notI : (` A -> {B} ` B) -> ` (fol.¬ A).
notE : ` (fol.¬ A) -> ` A -> {B} ` B.

}.

For simplicity, we will use the non-modular version above
as the meta-theory of our Twelf encodings and refer to it
simply as FOL.

A special case of inheritance relation is the include decla-
ration. The declaration %include S occurring in T creates
an inclusion from S to T . This is similar to a structure dec-
laration but simpler and only possible in certain cases. If
a signature is included in multiple ways, all inclusions are
identified. Therefore, a symbol c included from S into T is
identified uniquely by the name S..c.

3. MODULAR REPRESENTATION OF AB-
STRACT ALGEBRA AND LATTICES

Our case study on the Twelf module system consists of two
major parts: The encoding of abstract algebra and the en-
coding of lattices (both as algebraic structures in Sect. 3.2.1
and as orderings in Sect. 3.2.2). The two variant of the en-
codings of lattices can be proven to be equivalent by trans-
lating the former encoding to the latter one. We elaborate
these translations by presenting brief examples in Sect. 3.2.3.
We present both the underlying mathematical theory of the
content being encoded and the respective Twelf encodings,
and highlight the main features of the Twelf module system
as we go along with the presentation of the encodings.

3.1 The Encoding of Algebraic Structures

3.1.1 Algebraic Structures with One Binary Opera-
tion

The most basic structure in algebra is a magma - a set
endowed with a binary operation. Virtually all other struc-
tures found in algebra - be it groups, ring, fields, or vector
spaces - are built on top of one or more magmas. Fig. 1
illustrates the hierarchy among the signatures encoding the
algebraic structures with one binary operation.

Magma

MagmaCommut MagmaRightIden Semigroup MagmaIdempotent

BandMagmaIdentity

MonoidMagmaRightInv

GroupGroupAbelian

Figure 1: The Signature Graph for Algebraic Structures with One
Binary Operation

%sig Magma = {
%include FOL %open i.
* : i -> i -> i. %infix *.

}.

In Twelf, we encode magmas in the signature Magma where
we declare the binary operation ∗. The underlying set of all

elements of the magma is precisely the type i of individuals
declared the signature FOL, which is imported to Magma as
an inclusion.

Given a magma M with the operation ∗, we may often
wish to consider the magma dual to M , i.e. the magma
with ∗ replaced by the operation ∗′, where x ∗′ y = y ∗ x.
This can be easily done by introducing a view from Magma

to Magma, which redefines the operation ∗ accordingly. The
term [x][y] y * x is a function of the required type i →
i→ i, hence the instantiation is valid.

%view OppositeMagma : Magma -> Magma = {
* := [x][y] y * x.

}.

%sig MagmaCommut = {
%include FOL %open ` ∀ ==.
%struct mag : Magma %open *.
commut : ` ∀ [x] ∀ [y] ((x * y) == (y * x)).

}.

We can now extend magmas by requiring that the binary
operation possesses certain properties. For instance, we de-
fine a commutative magma in the signature MagmaCommut by
encapsulating an instance of Magma and adding a commuta-
tivity axiom.

An instance of Magma is imported into MagmaCommut via
%struct mag : Magma, which imports all symbols and ax-
ioms declared in Magma - in our case just the symbol ∗ -
and prefixes all symbol names with the name of the im-
port. In this respect, the %struct and %include operators
behave similarly; however, unlike %include, which only im-
ports symbols and axioms, the %struct operator also allows
us to instatiate imported symbols with existing ones. Fur-
thermore, if two copies of the same signature are imported
via a %struct they are treated as different; if they are in-
cluded by means of an %include they are considered identi-
cal.

We define a semigroup, which is an associative magma,
and an idempotent magma analogous to MagmaCommut by ex-
tending Magma with an axiom for associativity and idempo-
tency, respectively.

%sig MagmaRightIden = {
%include FOL %open i ` ∀ ==.
%struct mag : Magma %open *.
e : i.
iden : ` ∀ [x] ((x * e) == x).

}.

Next, we define a magma with an identity element for ∗.
To this extent, we first define a magma with a special ele-
ment e, and add an axiom asserting that e is a right identity
for the magma.

If a magma has a left identity element e, then in its dual
the element e is a right identity. Thus, we can define a
magma with both right and left identity by using duality as
follows.

%sig MagmaIdentity = {
%include FOL.
%struct rid : MagmaRightIden %open e.
%struct lid : MagmaRightIden = {

%struct mag := OppositeMagma rid.mag.
e := e.}.

}.

The symbols ∗ and e are imported from MagmaRightIden

via the structure rid, thus we know that e is a right iden-
tity for ∗. To assert that e is also a left identity, we use a
second instance of MagmaRightIden, which we get via the
structure lid. We do not wish to import any new symbols

this way, but only axioms. For this reason, we introduce
two assignments in lid. We want the identity element we
get via lid to be precisely the element e coming from rid;
therefore we have the (second) assignment e := e (the left-
hand side is the name of the symbol imported by lid while
the right-hand side is the element e that already exists in
MagmaIdentity).

Consider %struct mag := OppositeMagma rid.mag, a struc-
ture assignment, which establishes that the operation ∗ im-
ported by lid is the dual operation of ∗ that comes via rid.
The assignment automatically instantiates all symbols in the
left-hand side structure by the corresponding symbols in the
right-hand side one. Now the structure lid gives us an ax-
iom asserting that e is a right identity for the dual of the
magma imported by rid. Via the instantiations, the original
axiom iden : ` ∀ [x] ((x * e) == x) of MagmaRightIden

maps to iden : ` ∀ [x] ((([x] [y] y * x) x e) == x),
which gets evaluated to iden : ` ∀ [x] ((e * x) == x) as
desired.

Now we are ready to define a monoid, which is a semigroup
with an identity element.

%sig Monoid = {
%include FOL.
%struct sg : Semigroup.
%struct miden : MagmaIdentity

= {% struct rid.mag := sg.mag.}.
}.

Therefore, we define the signature Monoid by importing from
Semigroup and MagmaIdentity, where we instantiate the
underlying magma of MagmaIdentity, with the underlying
magma of Semigroup in order to assert that the operation ∗
that comes from both signatures is the same. This is done
by the structure assignment %struct rid.mag := sg.mag in
miden. In a similar fashion we define a band, which is an
idempotent semigroup.

%sig MagmaRightInv = {
%include FOL %open i ` ∀ ==.
%struct id : MagmaIdentity %open * e.
inv : i -> i.
inverse : ` ∀ [x] ((x * (inv x)) == e).

}.

Our next goal is to define a group, probably the most rec-
ognized algebraic structure with a single operation. A group
is a monoid where every element has an inverse. Similarly
as with identities, we first define a magma in the signature
MagmaRightInv, where every element has a right inverse. For
this we extend MagmaIdentity, since talking about inverses
only make sense in a structure with (at least a one-sided)
identity. We declare a new symbol inv for the inverse opera-
tion and add an axiom asserting that for each x, the inverse
of x is its right inverse.

Now we could proceed to define a magma where every
element has an inverse, much like we did with identities.
However, it turns out this is not necessary - for a definition
of a group we can likewise assume every element has a right
inverse and from this it follows that each element necessar-
ily has an inverse. This is easy to see and we leave it to
the reader. Hence, we have the following formalization of
groups.

%sig Group = {
%include FOL.
%struct mon : Monoid %open * e.
%struct minv : MagmaRightInv =

{% struct id := mon.miden.} %open inv.
}.

As usual, we identify the two copies of the identity opera-
tion coming from the signatures Monoid and MagmaRightInv,
by introducing the assignment %struct id := mon.miden.

Abelian groups are groups in which the operation ∗ is
commutative, and we often write +, 0,− instead of ∗, e and
the inverse operation. Therefore, we define the signature
GroupAbelian by importing from Group and MagmaCommut.
When importing from MagmaCommut, we instantiate the struc-
ture mag with the structure that inherits the underlying
magma of the group imported into GroupAbelian in order to
assert that the operation ∗ in that comes along g coincides
with the one that comes along mc.

%sig GroupAbelian = {
%include FOL.
%struct g : Group %open * e inv.
%struct mc : MagmaCommut =

{% struct mag := g.mon.sg.mag.}.
+ = [x][y] x * y. %infix +.
0 = e.
- = inv.

}.

3.1.2 Algebraic Structures with Two Binary Opera-
tions

Now we consider algebraic structures with two binary op-
erations, usually denoted as + and ∗. Fig. 2 illustrates the
modular dependency between the signatures encoding the
algebraic structures with two binary operations.

Magma

RightDistrib

Distrib

GroupAbelian Semigroup MagmaCommut

Ring RingCommut

Monoid RingUnit RingDivision Field

Figure 2: The Signature Graph for Algebraic Structures with Two
Binary Operations

%sig RightDistrib = {
%include FOL %open ` ∀ ==.
%struct add : Magma.
%struct mul : Magma.
+ = [x][y] x add.* y. %infix +.
* = [x][y] x mul.* y. %infix *.
dist : ` ∀ [x] (∀ [y] (∀ [z]
(((x + y) * z) == ((x * z) + (y * z))))).

}.

First, we encode an algebraic structure where the right-
distributive law holds, i.e. for all x, y, z, we have (x+y)∗z =
x ∗ z+ y ∗ z. For that we need two binary operations, which
we get via importing Magma twice (by the structures mag1

and mag2), and we denote the binary operations we get via
mag1 and mag2 as + and ∗, respectively.

We can obtain a left-distributive algebraic structure from
RightDistrib if we have a magma and its dual. Thus, we
can give the following encoding of a distributive structure
in the signature Distrib. The magmas imported by the
structures rdis and ldis should coincide, since they define
the same + operation. The second magmas should be dual
to each other since we want to invert the order of arguments
in ∗.
%sig Distrib = {

%include FOL.
%struct rdis : RightDistrib.
%struct ldis : RightDistrib =

{% struct add := rdis.add.

%struct mul := OppositeMagma rdis.mul.}.
}.

%sig Ring = {
%include FOL.
%struct ga : GroupAbelian.
%struct sg : Semigroup.
%struct dis : Distrib = {

%struct rdis.add := ga.g.mon.sg.mag.
%struct rdis.mul := sg.mag.}.

}.

A ring is a set S together with two operations + and ∗ and
an element 0 such that (S,+, 0) is an Abelian group, (S, ∗)
is a semigroup, and (S,+, ∗) is a distributive structure. We
can easily encode this as follows.

We encode a commutative ring, where the operation ∗
is commutative, by extending Ring with the properties of
MagmaCommut. Similarly, we encode a ring with unity, where
we have an identity element for ∗, which is commonly de-
noted as 1, by extending Ring with Monoid. We encode these
two algebraic structures in the signatures RingCommut and
RingUnit, whose contents are omitted here.

A division ring is a ring with unity, where each non-zero
element has an inverse. The natural way to encode this
would be to say that a ring (S,+, 0,−, ∗, 1) is a division ring
if the set S \ {0} with the operations ∗ and 1 forms a group.
Since we use FOL as our meta-logic, we cannot talk about
subsets of the set of all individuals (i.e. terms of type i)
as FOL does not have subsorting. Hence, we need to add
separate axioms for the existence of inverses, which are given
by the terms invLeft and invRight.

%sig RingDivision = {
%include FOL %open i ` ∀ ⇒ != ==.
%struct ru : RingUnit %open 0 * 1.
inv : i -> i.
invLeft : ` ∀ [x] ((x != 0) ⇒

((x * (inv x)) == 1)).
invRight : ` ∀ [x] ((x != 0) ⇒

(((inv x) * x) == 1)).
}.

%sig Field = {
%include FOL.
%struct rd : RingDivision.
%struct mc : RingCommut = {

%struct r := rd.ru.r.}.
}.

Finally, we define a field as a commutative division ring:
When importing RingCommut we instantiate the structure r

with the underlying ring of the imported division ring rd, to
assert that the operations +, 0,−, ∗ imported via rd coincide
with the ones imported via mc. These encodings can be
found in [SR09].

3.2 The Encoding of Lattices

3.2.1 Lattices as Algebraic Structures
A lattice is an algebra 〈L;∩,∪〉, where L is a non-empty

set, and ∩ and ∪ are binary operations on L. We will call
these operations meet and join, respectively. Also, both
operations have to satisfy idempotency, commutativity, as-
sociativity and the following absorbtion laws: a∩ (a∪b) = a
and a ∪ (a ∩ b) = a.

We encode the theory of lattices modularly using the al-
gebraic structures from Sect. 3.1 as illustrated in Fig. 3.

A semilattice is an algebra whose operation is idempo-
tent, commutative and associative. A lattice is thus defined
to contain two semilattices connected by the above-defined

Magma

MagmaCommut MagmaIdempotent Semigroup

Band Monoid

SemiLattice SemiLatticeBounded

BiSemiLattice LocBddSemiLattice

LatticeAlg LatticeBddAlg

Figure 3: The Signature Graph for Lattices as Algebras

absorbtion laws. Given that the underlying operations of
these semilattices are ∩ and ∪, they are therefore called
meet semilattice and join semilattice, respectively.

%sig SemiLattice = {
%include FOL.
%struct mc : MagmaCommut.
%struct bd : Band = {

%struct sg.mag := mc.mag.}.
}.

We encode semilattices in the signature SemiLattice as
a union of other algebraic structures, whose joint intrinsic
axioms establish all of its defining properties. SemiLattice

inherits commutativity from a commutative magma via the
structure mc, associativity and idempotency from a band via
the structure bd. We enforce with a structure assignment
that MagmaCommut and Band share a common magma.

Extending the concept, we can introduce a bisemilattice
as the pair consisting of a meet and a join semilattice, i.e
an algebra with the operations ∩ and ∪, both of which sat-
isfy the three above-mentioned properties. Thus, it follows
naturally that a lattice can be considered as a bisemilattice
that satisfies the absorption laws.

%sig BiSemiLattice = {
%include FOL.
%struct meet : SemiLattice.
%struct join : SemiLattice.
∩ = [x][y] x meet.bd.sg.mag.* y.

%infix ∩.
∪ = [x][y] x join.bd.sg.mag.* y.

%infix ∪.
}.

The meet and join operation of BiSemiLattice are de-
fined using two copies of the ∗ operation of Magma, imported
along the structures meet.bd.sg.mag and join.bd.sg.mag,
respectively.

Finally, we encode lattices in the signature LatticeAlg

by importing a BiSemiLattice and asserting the absorption
laws additionally.

%sig LatticeAlg = {
%include FOL %open ` ∧ ∀ ==.
%struct bisemlat: BiSemiLattice %open ∩ ∪.
absorbtion: ` ∀ [x] ∀ [y] ((x ∩ (x ∪ y)) == x)

∧ ((x ∪ (x ∩ y)) == x).
}.

We encode bounded semilattices and lattices analogous to
the encodings of semilattices and lattices by extending them
with greatest and least elements.

3.2.2 Lattices as Ordered Sets

Here we represent lattices from a set ordering perspective.
The signature graph for the encoding of lattices as orderings
is given in Fig. 4.

Let us introduce the notion of a poset 〈L;≤〉, which is
defined as a set equipped with a partial ordering ≤, i.e sat-
isfying reflexivity, anti-symmetry and transitivity. A lattice
is then a poset 〈L;≤〉 such that, for every pair of elements
a, b ∈ L, there exist inf{a, b} and sup{a, b}. A meet (join)
semilattice is a poset 〈L;≤∩〉 (〈L;≤∪〉), such that, for all
a, b ∈ L, there exists inf{a, b} (sup{a, b}).

Order

OrderTop OrderInf OrderSup OrderBot

Cartesian LatticeOrd Cocartesian

LatticeBddOrd

Figure 4: The Signature Graph for Lattices as Orderings

First, we encode orderings in the signature Order by intro-
ducing a binary operation ≤ and its partial ordering prop-
erties. ≤ takes two arguments of type i and returns a truth-
value, which encodes whether the first element is smaller or
equal to the second.

%sig Order = {
%include FOL %open i o ` ∧ ⇒ ∀ ==.
≤ : i -> i -> o. %infix ≤.
refl : ` ∀ [x] (x ≤ x).
antisym : ` ∀ [x] (∀ [y]

((x ≤ y) ∧ (y ≤ x) ⇒ (x == y))).
trans : ` ∀ [x] (∀ [y] (∀ [z]

((x ≤ y) ∧ (y ≤ z) ⇒ (x ≤ z)))).
}.

We encode a meet semilattice in the signature OrderInf

as an ordering with a binary infimum operation. First, we
import from Order and add the infimum axiom, ax_inf.
Then we introduce a binary operation Inf whose definition
is not yet given. Next, we define a predicate is_infimum_of

that takes three arguments, namely two elements x and y,
and one of their lower bounds l, and checks that for every
other lower bound z of x and y whether l is actually the
greatest one, i.e., z ≤ l. Finally, we can assert the axiom
ax_inf, which encodes that for any elements x and y, the
term Inf x y is the infimum of x and y.

%sig OrderInf = {
%include FOL %open i o ` ∧ ⇒ ∀.
%struct ord : Order %open ≤.
Inf : i -> i -> i.
is_infimum_of : i -> i -> i -> o = [x][y][l]

((l ≤ x) ∧ (l ≤ y)) ∧
(∀ ([z] ((z ≤ x) ∧ (z ≤ y) => (z ≤ l)))).

ax_inf : ` ∀ [x] ∀ [y] is_infimum_of x y (Inf x y).
}.

Analogously, the signature OrderSup encodes an ordering
with a binary supremum operation.

%sig OrderSup = {
%include FOL %open i o ` ∧ ⇒ ∀.
%struct ord : Order %open ≤.
Sup: i -> i -> i.
is_supremum_of: i -> i -> i -> o = [x][y][u]

((x ≤ u) ∧ (y ≤ u)) ∧
(∀ ([z] ((x ≤ z ∧ y ≤ z) => u ≤ z))).

ax_sup: ` ∀ [x] ∀ [y] is_supremum_of x y (Sup x y).
}.

Notice that we can make the infimum and the supremum
operation equivalent on the dual order. Therefore, we define

the view Opp below, which interprets Order in itself where its
binary operation ≤ is mapped to the term [x][y] (y ≤ x),
i.e., the dual of ≤. In other words, it reflects the fact that
the ordering properties are maintained when the order of the
arguments of≤ is switched. Therefore, we have to prove that
reflexivity, anti-symmetry and transitivity hold for the dual
of ≤. More specifically, we need to map the terms refl,
antisym and trans in Order to respective proof terms.

%view Opp : Order -> Order = {
leq := [x][y] (y ≤ x).
refl := refl.
antisym := FOL.. forallI [x] FOL.. forallI [y]

FOL..impI [p] (FOL..impE (FOL.. forallE y
(FOL.. forallE x antisym))(FOL..andI
(FOL..andEr p) (FOL..andEl p))).

trans := FOL.. forallI [x] FOL.. forallI [y]
FOL.. forallI [p] FOL..impI [u] (FOL..impE
(FOL.. forallE x (FOL.. forallE y
(FOL.. forallE p trans))) (FOL..andI
(FOL..andEr u)(FOL..andEl u))).

}.

First, refl is trivially mapped to itself since an opposite
ordering has no effect when the two arguments of ≤ are
equal. Second, antisym on this inverse order is obtained
by applying modus ponens to the corresponding property
in Order and to a new clause resulting from the latter by
inverse elimination of the hypothesis conjuncts. The proof
term for transitivity follows similarly. Currently, the imple-
mentation of the Twelf module system does not allow one to
omit qualified names within views, which makes even simple
proofs look rather ghastly.

We define lattices as orderings in the signature LatticeOrd
by extending the notions of meet and join semilattices to
that of two orderings with the infimum and supremum op-
erator, respectively. Thus we import from OrderInf and
OrderSup and add the condition that the corresponding or-
derings are actually equivalent, which we elaborate in Sect.
3.2.3.

%sig LatticeOrd = {
%include FOL %open ` ∀ == <=>.
%struct inf : OrderInf.
%struct sup : OrderSup.
ax_leq : ` ∀ [x] ∀ [y]

((x inf.ord.leq y) <=> (x sup.ord.leq y)).
}.

The remaining signatures in Fig. 4 are OrderTop and
OrderBot, which encode orderings with greatest (top) and
smallest (bottom) element, respectively; Cartesian, which
encodes an ordering with a top element and an infimum
operation; Cocartesian, which encodes an ordering with
a bottom element and a supremum operation; and finally,
LatticeBddOrd, which encodes an order-based bounded lat-
tice. We omit their definitions here.

3.2.3 Equivalence of the Two Definitions
We illustrate how the two approaches in the definition of

lattices are equivalent by translating one definition to the
other one by means of views. A view v : S → T from a
signature S to a signature T maps every symbol s in S to an
expression t in T , where the typing relation is preserved. The
homomorphic extension of v maps all S-expressions (i.e.,
terms, types and kinds) to T -expressions. This means that
a term s : A in S is translated to a term v(s) : v(A) in T .

Fig. 5 presents some of the views we have established
between the signatures corresponding to the order-based
and algebraic lattices (the full encoding can be found in
[DR09]). The views are indicated with double arrows and

local names of the structures are given. These views are Opp

from Sect. 3.2.2, OppSup and OppInf, which map an ordering
with an supremum operation to an ordering with an infimum
operation and vice-versa; OrdSL and SLOrd, which map an
ordering with an infimum operation to an algebraic semi-
lattice and vice-versa; and LatOrdAlg and LatAlgOrd which
map an order-based lattice to its algebraic counterpart and
vice-versa.

We briefly explain the views OrdSL and LatOrdAlg. To
understand the views, consider that the following are equiva-
lent in LatticeAlg (see, e.g., [DP02]): a∩b = a and a∪b = b.
The equivalence between LatticeOrd and LatticeAlg inter-
prets a ≤ b as this condition, and ∩ and ∪ as Inf and Sup.

Order

OrderSup OrderInf

LatticeOrd

SemiLattice

BiSemiLattice

LatticeAlg

ord ord

sup inf

meet join

bisemlat

Opp

OppSup

OppInf

OrdSL

SLOrd

LatOrdAlg

LatAlgOrd

Figure 5: A Simplified Signature Graph for Views between Order-
Based and Algebraic Lattices

To conclude the view analysis, we present the view estab-
lishing the top-level mapping from an order-based lattice to
an algebraic lattice. We initially had the version of the sig-
nature LatticeOrd on the right, where we shared the struc-
tures inf.ord and sup.ord by making them definitionally
equal.

%sig LatticeOrd = {
%include FOL.
%struct inf : OrderInf.
%struct sup : OrderSup = {% struct ord := inf.ord.}.

}.

However, this proved to be difficult later when establishing
the view LatOrdAlg shown below. Mathematically, the view
should map the following: (1) inf.ord to x∩ y = x, and (2)
sup.ord to y ∪ x = y, which can be shown to be equivalent
in LatticeAlg. However, since these are not definitionally
equal, the view is rejected by Twelf. Therefore, we used
the version of LatticeOrd as in Sect. 3.2.2, i.e., only assert-
ing that the two orderings are equivalent – recall ax_leq in
LatticeOrd – instead of making them definitionally equal.

%view LatOrdAlg : LatticeOrd -> LatticeAlg = {
%struct inf := OrdSL bisemlat.meet.
%struct sup := OppSup OrdSL bisemlat.join.
ax_leq := . . .

}.

LatOrdAlg interprets the constants of LatticeOrd in the
signature LatticeAlg as follows. (Fig. 5 should help the
reader to follow the morphism compositions we will explain
below.) The structure inf, which imports OrderInf into
LatticeOrd needs to be mapped to a morphism, which in-
terprets OrderInf in LatticeAlg. We, therefore, map inf to
the composition of the view OrdSL, which interprets OrderInf
in SemiLattice, and the structure bisemlat.meet, which
imports the content of SemiLattice into LatticeAlg. Thus,
the interpretation of the structure sup is not only analogous
to that of inf, but even re-uses the interpretation of inf

by means of the view OppSup. Finally, we map ax_leq to a

proof term that proves that the conditions (1) and (2) above
are equivalent.

4. CONCLUSION
We have demonstrated that informal mathematical con-

tent can be given a precise formal representation in the Twelf
module system. The modular structure in the encoding is
particularly natural with respect to how informal mathe-
matical reasoning is usually performed. Moreover, signa-
ture morphisms allow for the re-use of individual concepts
encoded in separate signatures when defining new ones.

Structures are especially useful to handle multiple inher-
itance of the same signature. However, they often create
lengthly prefixes of symbols (e.g., ga.g.mon.sg.mag in the
signature Ring). While the opening of names is one way to
avoid prefixes, further improvements can be done for struc-
ture names: The number of morphisms of a certain type is
often quite limited, and all these morphisms can be found
by a path search in the signature graph. We propose to
devise an inference mechanism in Twelf that infers the pos-
sible targets of an unknown structure reference and chooses
the best matching one according to some name resolution
algorithm. Such a mechanism would allow the user to write
down simplified structure names.

One significant problem we encountered in our case study
is due to the fact that consistency conditions in morphisms
are checked against Twelf’s definitional equality. That pre-
cludes the justification of views by appealing to provable
equality (or in our case: equivalence) of expressions. The
latter would clearly be desirable but very difficult to realize
in a logical framework like LF where any equality relation
going beyond the built-in definitional equality is represented
by a user-declared symbol that is not treated differently from
any other symbol.

5. REFERENCES
[AHMS99] S. Autexier, D. Hutter, H. Mantel, and

A. Schairer. Towards an Evolutionary Formal
Software-Development Using CASL. In D. Bert,
C. Choppy, and P. Mosses, editors, WADT,
volume 1827 of Lecture Notes in Computer
Science, pages 73–88. Springer, 1999.

[Chr03] Jacek Chrzszcz. Implementing modules in the
Coq system, 2003.

[Coq] The Coq Proof Assistant.
http://coq.inria.fr/.

[DP02] B.A. Davey and H.A. Priestley. Introduction to
Lattices and Order. Cambridge Univ. Press,
2002.

[DR09] Stefania Dumbrava and Florian Rabe. The
Twelf Encoding of Lattices and Orderings,
2009. https:
//svn.kwarc.info/repos/twelf/order/.

[Far00] William Farmer. An infrastructure for
intertheory reasoning. In David McAllester,
editor, Automated Deduction – CADE-17,
number 1831 in LNAI, pages 115–131. Springer
Verlag, 2000.

[FGT92] William Farmer, Josuah Guttman, and Xavier
Thayer. Little theories. In D. Kapur, editor,
Proceedings of the 11th Conference on
Automated Deduction, volume 607 of LNCS,

pages 467–581, Saratoga Springs, NY, USA,
1992. Springer Verlag.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A
framework for defining logics. Journal of the
Association for Computing Machinery,
40(1):143–184, 1993.

[HR09] F. Horozal and F. Rabe. Representing Model
Theory in a Type-Theorical Logical
Framework. Submitted, 2009.

[HST94] R. Harper, D. Sannella, and A. Tarlecki.
Structured presentations and logic
representations. Annals of Pure and Applied
Logic, 67:113–160, 1994.

[KW98] Florian Kammüller and Markus Wenzel.
Locales: A sectioning concept for Isabelle. In
Theorem Proving in Higher Order Logics
(TPHOLs Š99), LNCS 1690, pages 149–165.
Springer, 1998.

[Pau94] L. Paulson. Isabelle: A Generic Theorem
Prover, volume 828 of Lecture Notes in
Computer Science. Springer, 1994.

[PS99] F. Pfenning and C. Schürmann. System
description: Twelf - a meta-logical framework
for deductive systems. Lecture Notes in
Computer Science, 1632:202–206, 1999.

[RS09] F. Rabe and C. Schürmann. A Practical
Module System for LF. Submitted, see
http://kwarc.info/frabe/Research/lf.pdf,
2009.

[SR09] Kristina Sojakova and Florian Rabe. The Twelf
Encoding of Basic Algebraic Structures, 2009.
https:

//svn.kwarc.info/repos/twelf/algebra/.

[Wen99] Markus Wenzel. Isar - a generic interpretative
approach to readable formal proof documents.
In TPHOLs, pages 167–184, 1999.

